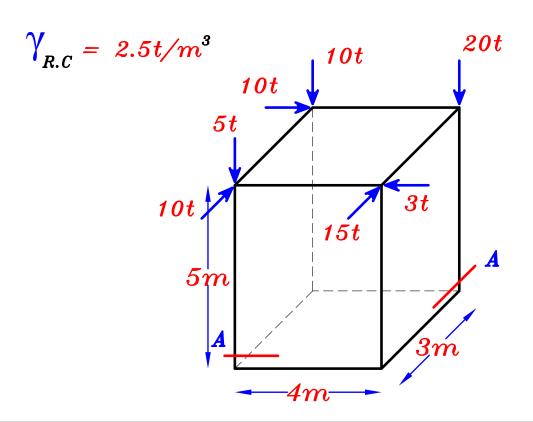
Straining Actions القوى الداخلية

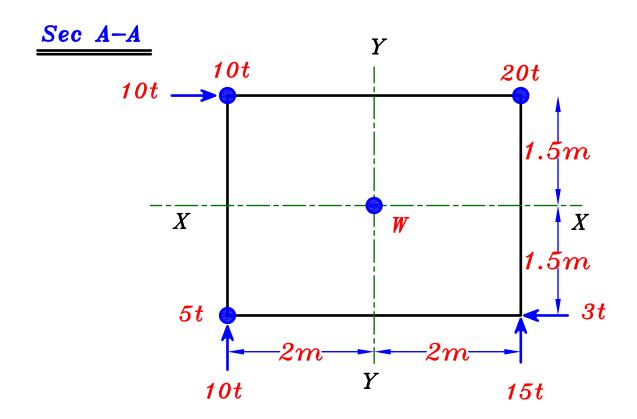
نسألكم الدعاء

Table of Contents

*	Straining Actions ——————	Page	2
*	Examples	Page	4

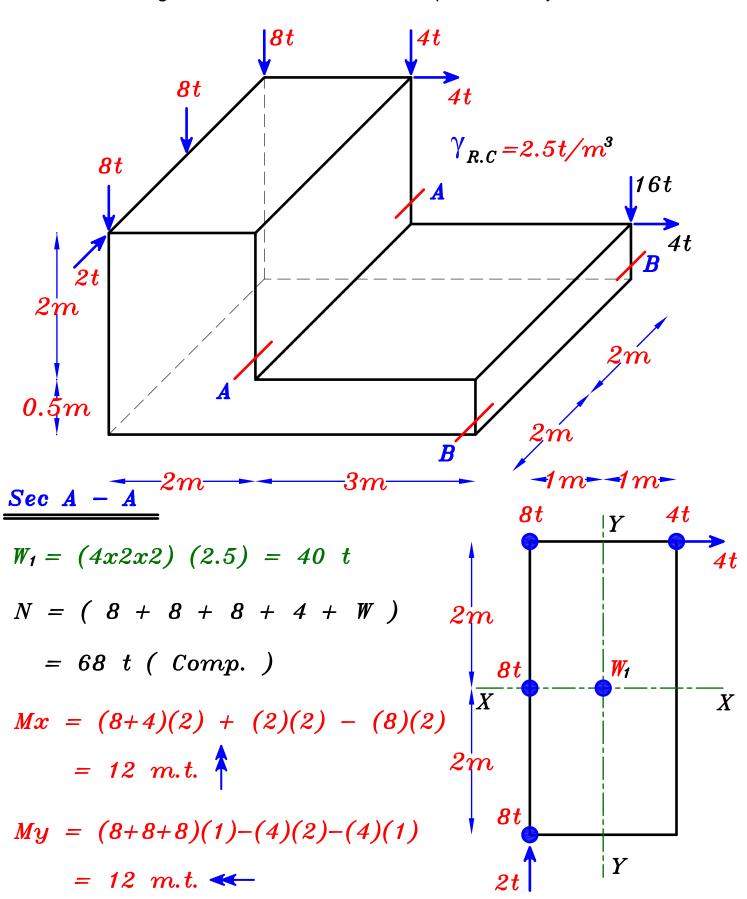
STRAINING ACTIONS


- و هذه القوى تنقسم الى جزئين
- $Normal\ Stresses$ الجزء الاول يسبب اجهادات عمودية على القطاع N , Mx , My و هى N , Mx , My
 - $Shear\ Stresses$ و الجزء الاخر يسبب اجهادات موازية للقطاع Qx , Qy , Mz و هى
 - و لحساب هذه القوى يتم اتباع الاتى
 - ١- يتم رسم مسقط موازى للقطاع
- ۲- یتم تحدید المحاور علی هذا المسقط بحیث یکون محور X , Y فی مستوی القطاع و محور Z عمودی علی القطاع
- $Normal\ force\ (N)$ يتم تجميع القوى الموازية لمحور Z فتكون هى ال
- $Shear\ force\ (Qx)$ ع- يتم تجميع القوى الموازية لمحور X فتكون هى ال
- $Shear\ force\ (Qy)$ ه- يتم تجميع القوى الموازية لمحور Y فتكون هى ال


- ٦- يتم اهمال القوى التى توازى محور Xو التى تقطع محور X و يتم أُخذ العزوم لباقى القوى حول محور X فيكون هو $Moment\ (Mx)$
- ۷- یتم اهمال القوی التی توازی محور Y و التی تقطع محور Y و یتم أخذ العزوم لباقی القوی حول محور فیکون هو $Moment\ (My)$
- ۸- یتم اهمال القوی التی توازی محور Z و التی تقطع محور Z و یتم اُخذ العزوم لباقی القوی حول محور فیکون هوMoment~(Mz~or~Mt)

ملحوظة هامة جدا

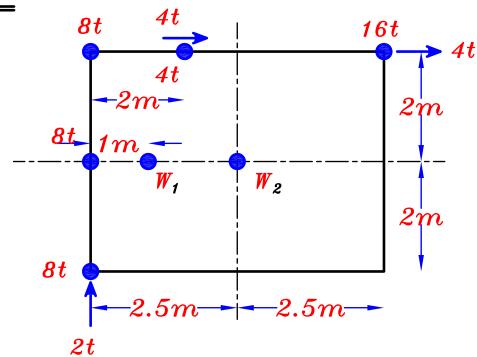
اذا كانت القوى التى تقطع المحور ظاهرة فى المسقط عبارة عن نقطة فانها تقطعه و اذا كانت ظاهرة فى المسقط عبارة عن سهم فيجب التأكد من المسقط الاخر اذا كانت تقطع المحور أم لا


For the shown concrete block determine the straining actions at section (A-A).

Weight =
$$3 \times 4 \times 5 \times 2.5 = 150 \text{ t (Comp.)}$$

 $1 - N = W + 20 + 10 + 5 = 185 \text{ t}$
 $2 - Qx = 10 - 3 = 7t$ \longrightarrow
 $3 - Qy = 10 + 15 = 25t$ \uparrow
 $4 - Mx = (10 + 15)(5) + (10 + 20)(1.5)$
 $- (5)(1.5) = 162.5 \text{ m.t}$ \uparrow
 $5 - My = (10 - 3)(5) + (20)(2)$
 $- (10 + 5)(2) = 45 \text{ m.t}$ \longrightarrow
 $6 - Mt = (10)(1.5) + (3)(1.5) - (15)(2)$
 $+ (10)(2) = 9.5 \text{ m.t}$

For the shown block it is required to find the straining actions at section (A - A).



$$Qx = 4t \longrightarrow$$

$$Qy = 2t \uparrow$$

$$Mt = (4)(2) + (2)(1) = 10 \text{ m.t}$$

Sec B-B

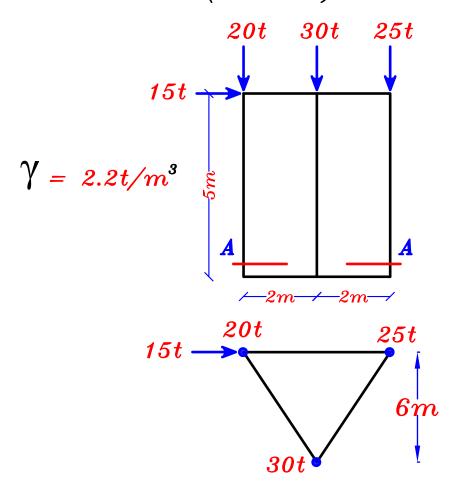
$$W_2 = 5 x 5 x 0.5 x 2.5 = 25t$$

$$N = 8 + 8 + 8 + 4 + 16 + W_1 + W_2 = 109t (Comp.)$$

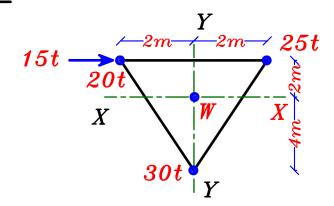
$$Qx = 4 + 4 = 8t \longrightarrow$$

$$Qy = 2t$$

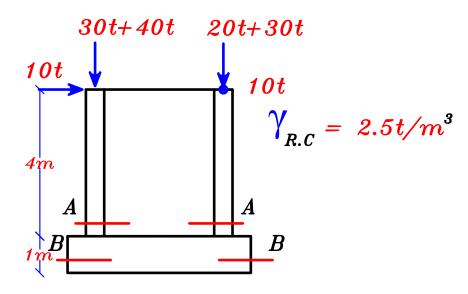
$$Mx = (8+4+16)(2) - (8)(2) + (2)(2.5) = 45m.t$$

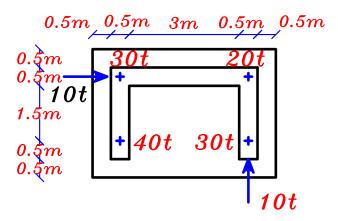

$$My = (8+8+8)(2.5) + (W)(1.5) + (4)(0.5) - (16)(2)$$

$$-(4)(0.5) - (4)(2.5) = 78 \text{ m.t}$$


$$Mt = (4+4)(2) + (2)(2.5) = 21 \text{ m.t}$$

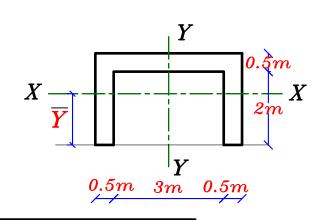
For the shown concrete block determine the straining actions at section (A - A).




Sec A-A

 $W = 0.5 \times 0.4 \times 6 \times 5 \times 2.2 = 132t$ N = 20 + 25 + 30 + W = 207t (Comp.) $Qx = 15t \longrightarrow$ Qy = 0 $Mx = (30)(4) - (20+25)(2) = 30m.t \longrightarrow$ $My = (25)(2) + (15)(5) - (20)(2) = 85m.t \longrightarrow$ Mz = (15)(2) = 30m.t

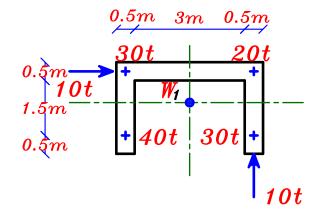
For the shown concrete block determine the straining actions at section (A-A) & (B-B).



Sec A-A

$$A = 4x2.5 - 3x2 = 4m^{2}$$

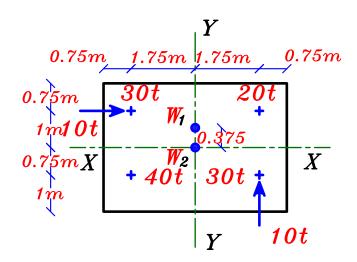
$$\overline{Y} = \frac{4x2.5x1.25 - 3x2x1}{4}$$


$$= 1.625m$$

$$W_1 = 4 \times 4 \times 2.5 = 40t$$
 $N = 30+20+40+30+W_1$
 $= 160t \ (Comp.)$

$$Qx = 10t$$

$$Qy = 10t$$


$$Mx = (40+30)(1.125) - (30+20)(0.625) - (10)(4)$$
$$= 7.5 \text{ m.t }$$

$$My = (20+30)(1.75) + (10)(4) - (30+40)(1.75)$$
$$= 5m.t \longrightarrow$$

$$Mt = (10)(1.75) - (10)(0.625) = 11.25 \text{ m.t}$$

Sec B-B

$$W_2 = 5 x 3.5 x 1 x 2.5 = 43.75t$$

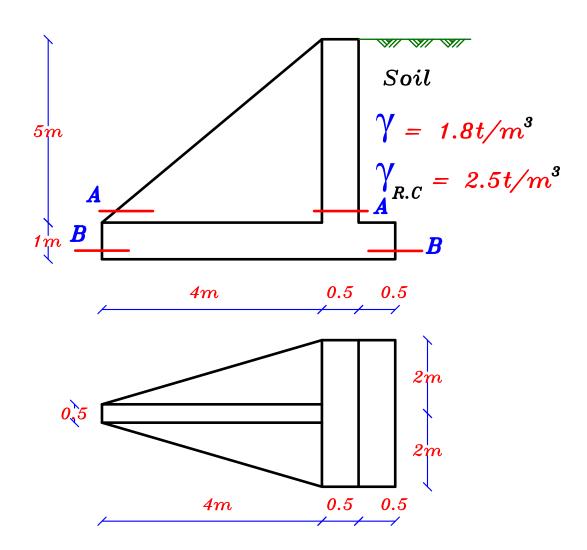
$$N = 20 + 30 + 40 + 30 + W_1 + W_2 = 203.75$$
 (Comp.)

$$Qx = 10t \longrightarrow$$

$$Qy = 10t$$

$$Mx = (20+30)(1) + (W)(0.375) + (10)(5)$$

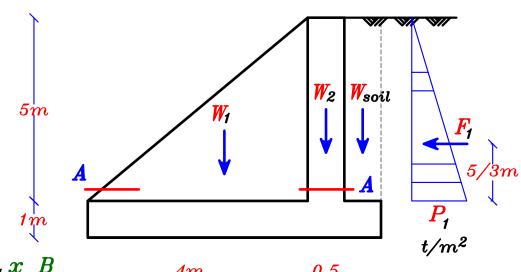
$$- (40+30)(0.75) = 62.5m.t$$


$$My = (20+30)(1.75) + (10)(5) - (40+30)(1.75)$$

$$= 15m.t \longrightarrow$$

$$Mt = (10)(1.75) - (10)(1) = 7.5 m.t$$




For the shown concrete block determine the straining actions at section (A-A) & (B-B).

Sec A-A

$$\overline{\overline{X}} = \frac{(4)(0.5)(2) + (4)(0.5)(4.25)}{4} = 3.125m$$

$$P_{1} = k \ x \ \gamma \ x \ h_{1} x \ B \qquad 4m \qquad 0.5$$

$$= \frac{1}{3} \ x \ 1.8 \ x \ 5 \ x \ 4 = 12 \ t/m^{2} \ Y$$

$$W_{1} \qquad W_{2} \qquad X$$

$$X \qquad 3.125m \qquad 0.875 \ 0.5$$

 $W_1 = 0.5x4x5x0.5x2.5 = 12.5t$

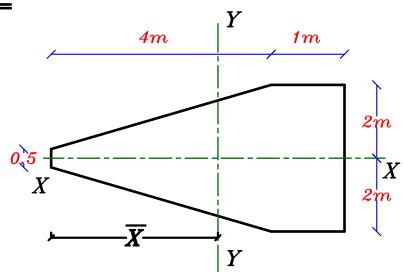
$$W_2 = 4x0.5x5x2.5 = 25t$$

$$F_1 = 0.5xP_1 x h_1 = 0.5 x 12 x 5 = 30 t$$

 $N = W_1 + W_2 = 37.5 \ (Comp.)$

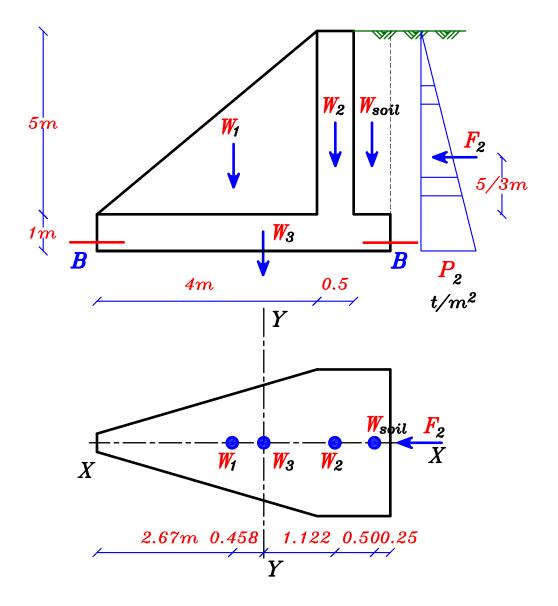
$$Qx = F_t = 30t \quad \longleftarrow$$

$$Qy = 0$$


$$Mx = 0$$

$$My = (W_1)(0.4583) + (F_1)(\frac{5}{3}) - (W_2)(1.125)$$

$$= (12.5)(0.4583) + (30)(\frac{5}{3}) - (25)(1.125) = 27.6m.t$$


$$Mt = 0$$

Sec B-B

$$A = 4x5 - 0.5x4x1.75x2 = 13m^2$$

$$\overline{X} = \frac{(4)(5)(2.5) - (4)(0.5)(1.75)(\frac{4}{3})(2)}{13} = 3.128m$$

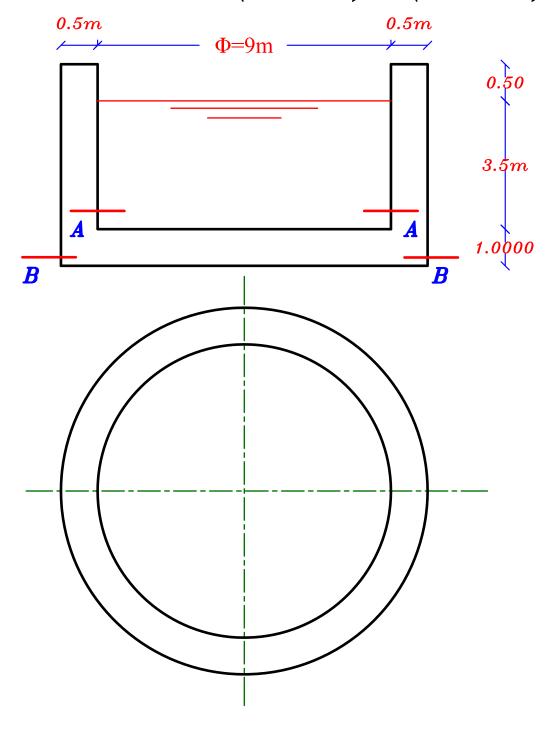
$$W_3 = 13x1x2.5 = 32.5t$$

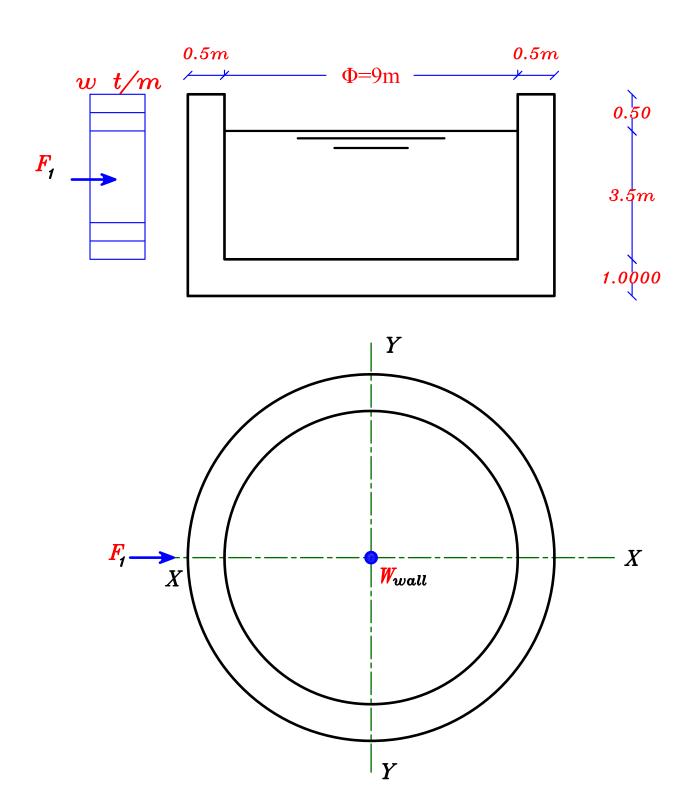
$$W_{soil} = 4x0.5x5x1.8 = 18t$$

$$P_2 = k x ? x h_2 x B = \frac{1}{3} x 1.8 x 6 x 4 = 14.4 t/m^2$$

$$F_2 = 0.50 \ x \ P \ x \ h_2 = 0.50 \ x \ 14.4 \ x \ 6 = 43.2 \ t$$

$$N = W_1 + W_2 + W_3 + W_{soil} = 88$$
 ($Comp.$)


$$Qx = F_2 = 43.2 t \quad \longleftarrow$$


$$Qy = 0$$

Mt = 0

فى حالة وجود رياح يتم تحويل شدة الرياح الى uniform load و ذلك عن طريق ضرب قيمة شدة الرياح فى عرض المنشأ الذى تصطدم به الرياح فيكون الناتج هو قيمة الـ Example uniform load

For the shown water tank subjected to a wind pressure with intensity of 0.2 t/m^2 , determine the straining actions at section (A - A) & (B - B).

Sec A-A

 $Uniform\ load = wind\ intensity\ x\ width$

$$= 0.20 x 10 = 2 t/m$$

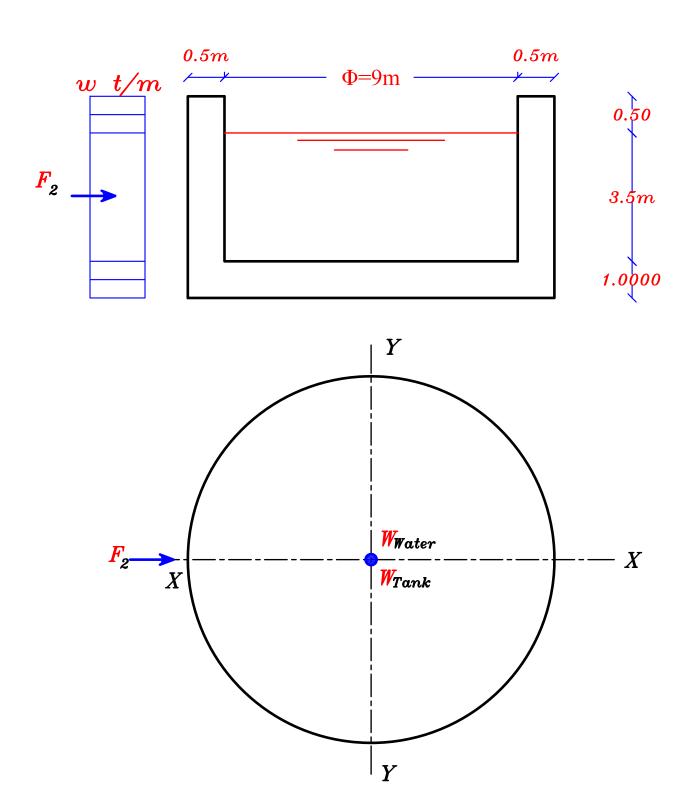
$$F_1 = (w) (4) = 8 t$$

$$Wwall = \pi [(5)^2 - (4.5)^2] (4) (2.5) = 149.22 t$$

$$N = Wwall = 149.22t \ (Comp.)$$

$$Qx = 8t \longrightarrow$$

$$Qy = 0$$


$$Mx = 0$$

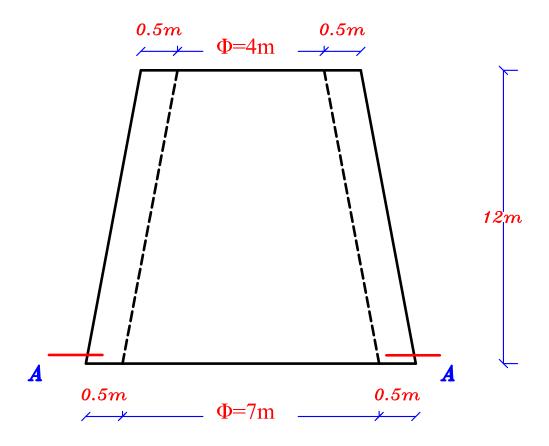
$$My = (F_1)(2) = 16 \text{ m.t}$$

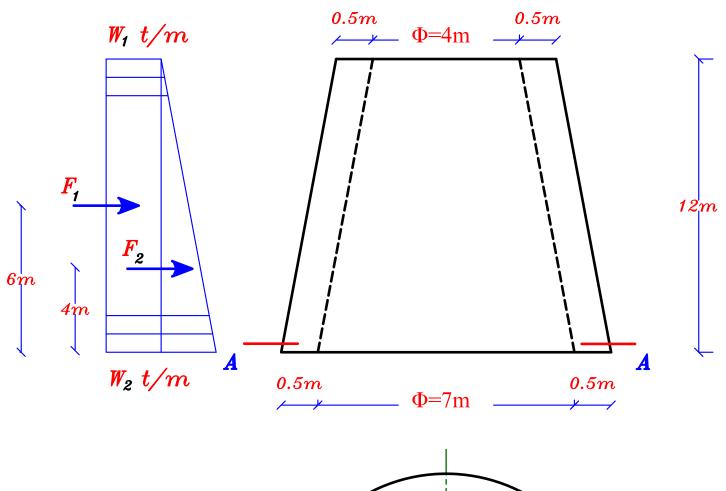
$$Mt = 0$$

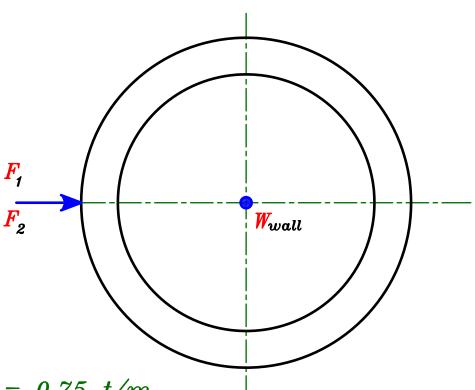
ملحوظة هامة

فى حالة $\frac{Sec}{A-A}$ لا يتم أخذ وزن المياه معنا فى الحسابات و ذلك لان المياه محملة على قاعدة الخزان بينما $\frac{Sec}{A-A}$ يوجد فى حوائط الخزان

Sec B-B


Uniform load = wind intensity x width $= 0.20 \ x \ 10 = 2 \ t/m$ $F_2 = (w) (5) = 10 \ t$ $Wwall = [\pi (5)^2 (5) - \pi (4.5)^2 (4)](2.5) = 345.5 \ t$ $Wwater = [\pi (4.5)^2 (3.5)] (1.0) = 222.66t$ N = Wwall + Wwater = 568.16t (Comp.) $Qx = 10t \longrightarrow Qy = 0$


$$Mx = 0$$


$$My = (F_2) (2.5) = 25 \text{ m.t} \longrightarrow$$

$$Mt = 0$$

For the shown concrete chimeny subjected to a wind pressure with intensity of 0.15 t/m^2 , determine the straining actions at section (A-A) .

$$W_1 = 0.15 \ x \ 5 = 0.75 \ t/m$$

$$W_2 = 0.15 \ x \ 8 = 1.2 \ t/m$$

$$F_1 = W_1 x 12 = 9t$$

$$F_2 = 0.5 (W_2 - W_1) x 12 = 2.7t$$

$$Wwall = A_{mean} x h x \gamma$$

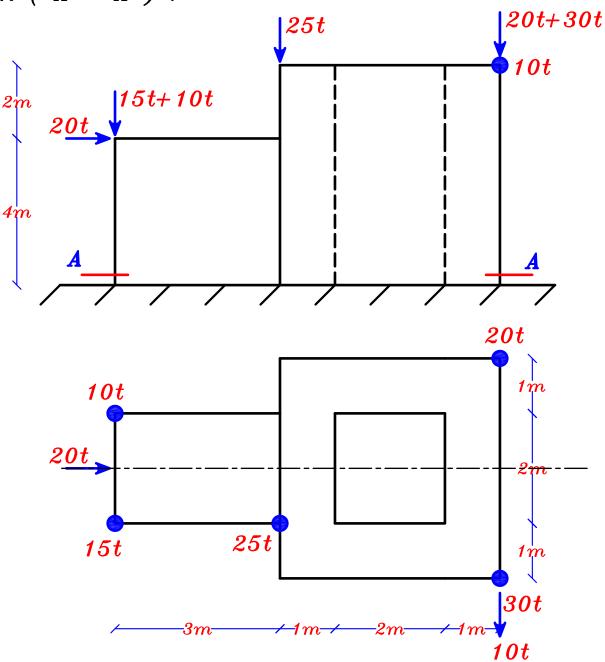
$$A_{mean} = \pi [(3.25)^2 - (2.75)^2] = 9.424 m^2$$

$$Wwall = 9.424 \ x \ 12 \ x \ 2.5 = 282.75 \ t$$

$$N = Wwall = 282.75 \ (Comp.)$$

$$Qx = F_1 + F_2 = 11.7t \longrightarrow$$

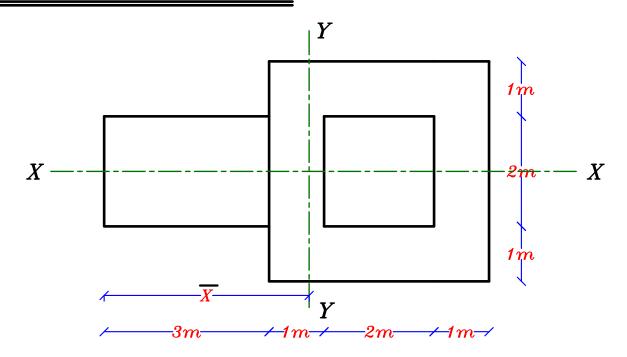
$$Qy = 0$$


$$Mx = 0$$

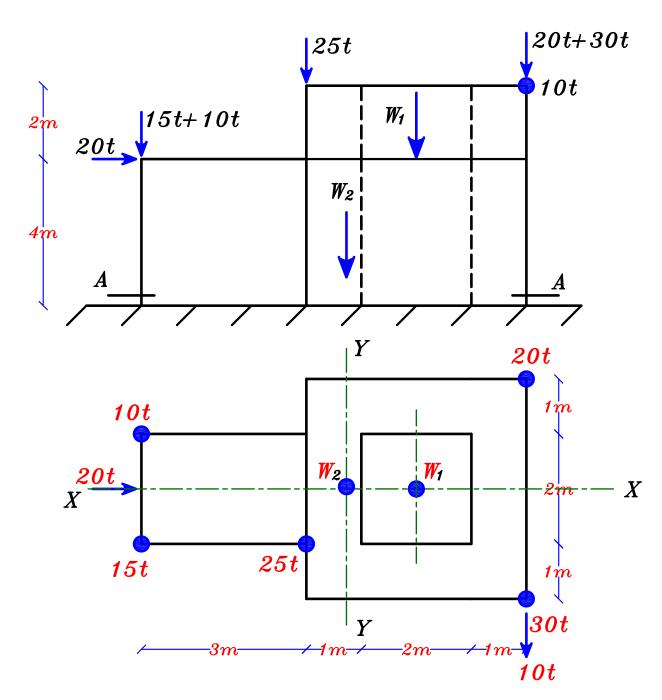
$$My = (F_1)(6) + (F_2)(4)$$

$$= 64.8 m.t \longrightarrow$$

$$Mt = 0$$


For the shown block it is required to find the straining actions causing normal stresses only at section (A-A).

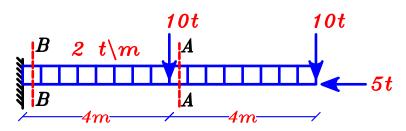
$$\gamma_{R.C} = 2.5 t/m^3$$


For sec A - A

1- Properties of area

$$A = (3x2) + (4x4 - 2x2) = 18 m^{2}$$

$$\overline{X} = \frac{(3x2)(1.5) + (4x4)(5) - (2x2)(5)}{18} = 3.833 m$$



$$W_1 = (4x4 - 2x2) (2) (2.5) = 60 t$$
 $W_2 = (18) (4) (2.5) = 180 t$
 $N = 10 + 15 + 25 + 30 + 20 + W_1 + W_2$
 $= 340 t (Comp.)$

$$Mx = (15x1) + (25x1) + (30x2) + (10x6) - (10x1)$$

- $(20x2) = 110 \text{ m.t}$

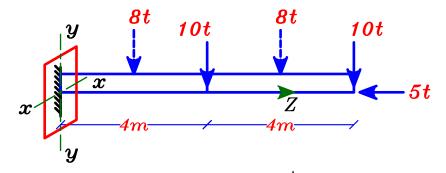
$$My = (20+30)(3.167) + (W_1)(1.167) + (20x4)$$
$$- (25x0.833) - (10+15)(3.833) = 191.66 \text{ m.t.} \longrightarrow$$

For the shown beam subjected to the <u>in plane</u> loads shown it is required to find the straining actions at section (A - A) & (B - B).

$$\begin{array}{c|c}
Sec. & A-A \\
\hline
& 5 & t & (Comp.) \\
& = 0
\end{array}$$

$$\# Q_Y = 18 t \downarrow$$

$$\# M_X = 10 * 4 + 8 * 2 = 56 m.t$$


$$\# M_Y = 0$$

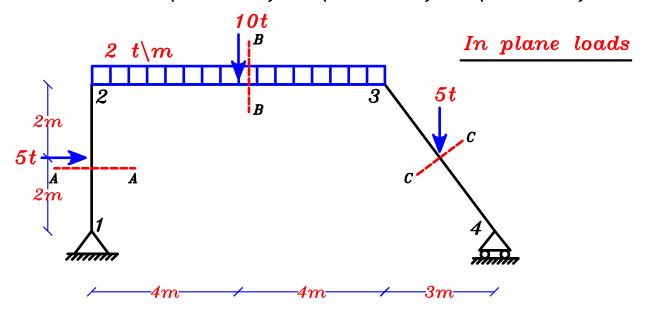
$$\# M_Z = 0$$

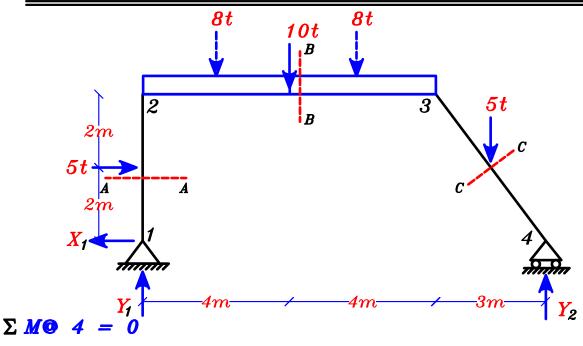
$$\frac{Sec. B-B}{\# N = 5 t}$$
 (Comp.)

$$\# Q_X = 0$$

$$\# Q_Y = 36 t \downarrow$$

$$\# M_X = 10 * 8 + 8 * 6 + 10 * 4 + 8 * 2 = 184 m.t$$


$$\# M_Y = 0$$


$$\# M_Z = 0$$

و من الممكن حساب ال M_X و من الممكن حساب ال M_X و الم M_X و الم M_X و الم M_X و المرات و يكون

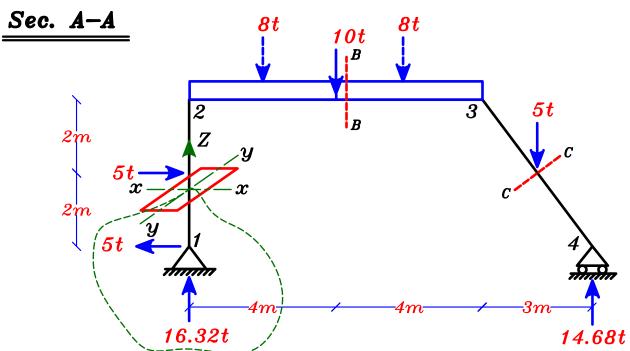
10t

For the shown frame it is required to find the straining actions at section (A - A) & (B - B) & (C - C).

$$10*7+8*5+8*9+5*1.5-5*2-Y_1*11=0$$

$$Y_1 = 16.32 t$$


$$\Sigma Y = 0$$

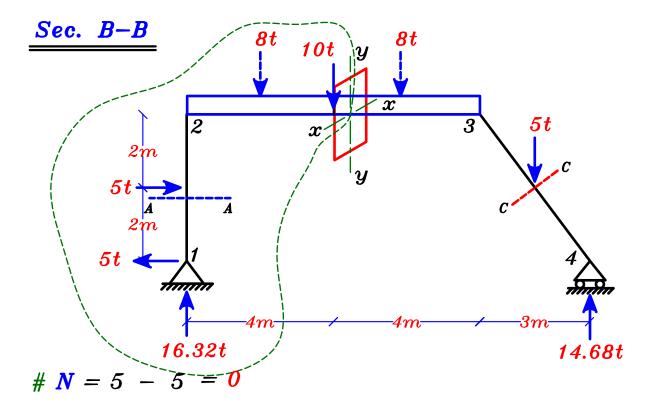

$$8 + 8 + 10 + 5 - 16.32 + Y_4 = 0$$

$$Y_2 = 14.68 t$$

$$\Sigma X = 0$$

$$5 - X_1 = 0 \qquad \boxed{X_1 = 5 t}$$

$$\# N = 16.32 \ t \ (Comp.)$$

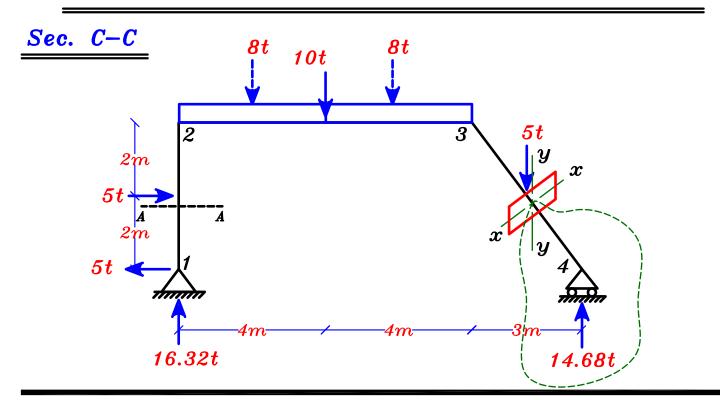

$$\# Q_X = 5 t \longleftarrow$$

$$\# Q_Y = 0$$

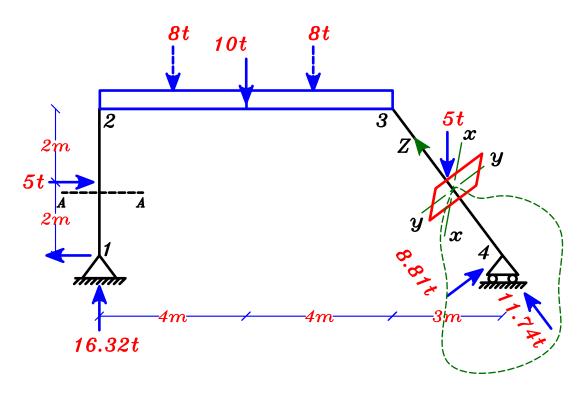
$$\# M_X = 0$$

$$\# M_Y = 5 * 2 = 10 m.t \iff$$

$$\# M_Z = 0$$


$$\# Q_X = 0$$

$$\# Q_Y = 8 + 10 - 16.32 = 1.68 t$$



$$M_X = 16.32 * 4 - 8 * 2 + 5 * 4 - 5 * 2 = 59.28 m.t$$

$$\# M_Y = 0$$

$$\# M_Z = 0$$

 $\cdot \; Q_X = M_Y = M_Z = 0$ المائل يعامل معاملة الافقى أى يكون member

$$\# N = 11.74 t (Comp.)$$

$$\# Q_X = 0$$

$$\# Q_Y = 8.81 t \nearrow$$

$$M_X = 14.68 * 1.5 = 22$$
 m.t

$$\# M_Y = 0$$

$$\# M_Z = 0$$

و من الممكن حساب الـ M_X هو M_X و الـ M_X و الـ M_X هو M_X و الـ M_X و الـ M_X و الـ M_X

و من الممكن حساب ال member الرأسى Shear & moment الرأسى و من الممكن حساب ال Q_X و الرامكن M_Y و الرامك

و من الممكن حساب ال M_X و من الممكن حساب ال Q_Y و الر M_X هو M_X و الر M_X و الر